Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag Res ; 39(9): 1149-1163, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34218734

RESUMO

Africa is the second populous continent, and its population has the fastest growing rate. Some African countries are still plagued by poverty, poor sanitary conditions and limited resources, such as clean drinking water, food supply, electricity, and effective waste management systems. Underfunded healthcare systems, poor training and lack of awareness of policies and legislations on handling medical waste have led to increased improper handling of waste within hospitals, healthcare facilities and transportation and storage of medical waste. Some countries, including Ethiopia, Botswana, Nigeria and Algeria, do not have national guidelines in place to adhere to the correct disposal of such wastage. Incineration is often the favoured disposal method due to the rapid diminishment of up to 90% of waste, as well as production of heat for boilers or for energy production. This type of method - if not applying the right technologies - potentially creates hazardous risks of its own, such as harmful emissions and residuals. In this study, the sustainability aspects of medical waste management in Africa were reviewed to present resilient solutions for health and environment protection for the next generation in Africa. The findings of this research introduce policies, possible advices and solutions associated with sustainability and medical waste management that can support decision-makers in developing strategies for the sustainability by using the eco-friendly technologies for efficient medical waste treatment and disposal methods and also can serve as a link between the healthcare system, decision-makers, and stakeholders in developing health policies and programmes.


Assuntos
Eliminação de Resíduos de Serviços de Saúde , Resíduos de Serviços de Saúde , Gerenciamento de Resíduos , Botsuana , Países em Desenvolvimento , Resíduos Perigosos
2.
J Med Eng Technol ; 42(7): 546-552, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30875263

RESUMO

A three-dimensional hip model was created from the MRI scans of one human subject based on constructing the entire pelvis and femur. The ball and socket joint was modelled between the hip's acetabulum and the femoral head to analyse the multiaxial loads applied in the hip joint. The three key ligaments that reinforce the external surface of the hip to help to stabilise the joint were also modelled which are the iliofemoral, the pubofemoral and ischiofemoral ligaments. Each of these ligaments wraps around the joint connection to form a seal over the synovial membrane, a line of attachment around the head of the femur. This model was tested for different loading and boundary conditions to analyse their sensitivities on the cortical and cancellous tissues of the human hip bones. The outcomes of a one-legged stance finite element analysis revealed that the maximum of 0.056 mm displacement occurred. The stress distribution varied across the model which the majority occurring in the cortical femur and dissipating through the cartilage. The maximum stress value occurring in the joint was 110.1 MPa, which appeared at the free end of the proximal femur. This developed finite element model was validated against the literature data to be used as an asset for further research in investigating new methods of total hip arthroplasty, to minimise the recurrence of dislocations and discomfort in the hip joint, as well as increasing the range of movement available to a patient after surgery.


Assuntos
Análise de Elementos Finitos , Quadril/fisiologia , Modelos Biológicos , Fêmur/fisiologia , Articulação do Quadril/fisiologia , Humanos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...